

Closed Flow System 1.0

Table of Contents
Table of Contents

Closed Flow System Overview
What DOES it do?
What DOESN’T it do?

Basic Scene Setup

Script Options
FlowEngine

Editor Properties
Add Range of Initial Spaces (Button)
Initial Water Spaces (List<GridSpace>)
Marker Sprite (Sprite Renderer)
Filled Sprite (Sprite Renderer)
Solver Max Iterations (int)
Solver Tolerance (float)
Fill Increment (float[0-30])
Drain Increment (float[0-30])
Fill Divisions (int[1-4])
Division Multiplier (int[1-8])
Starting Particles Per Space (int[4-16])
Fill Update Frequency (float[0-1])
Auto Fill Particle Count (int[1-20])
Maximum Water Opacity (float[0-1])

SimulationEngine
ISimulationEngine

StartedSimulation (event Action)
StoppedSimulation (event Action)
AllNodes (IEnumerable<IFlowNode>)
TransformGridToWorld(Vector2 -> Vector2)

Editor Properties
Gather Nodes (Button)
Start Simulating (bool)
Grid Scale (float)
Grid Origin (Vector2)
Nodes (List<GameObject>)

Pipe
Editor Properties

Pipe Space (GridSpace)
Default Sprite (Sprite)

HoldingTank
Editor Properties

Lower Left (GridSpace)
Width (int)
Height (int)

HorizontalPump
Editor Properties

Maximum Acceleration (float)
Functions

SetActuation (float)

Closed Flow System Overview
The Closed Flow System provides physics based 2D fluid flow simulation through a static set of
enclosed pipes. For more information, visit www.cerebralnexus.com, or contact
support@cerebralnexus.com with any questions or comments.

What DOES it do?
● Simulates how water would flow through a given pipe system.Supports pumps that can

add acceleration to the system.
● Has a full set of straight, right angled, and T pipes, along with larger holding tanks,

collectively referred to as flow nodes.
● Flow nodes must be aligned on a grid
● Has a custom editor script that will automatically snap all flow nodes to the grid after they

are approximately hand placed.
● Runs fluidly on iPhone 6s.

What DOESN’T it do?
● Detailed realistic water surface simulation.Buoyancy calculations.
● Any flow outside of the static, predefined pipe system.
● Work with WebGL

http://www.cerebralnexus.com/
mailto:support@cerebralnexus.com

Basic Scene Setup
This section will go through setting up a flow system from a new, blank scene. The first step will
be to add the demo SimulationEngine prefab to the scene. This is located under
ClosedFlowSystem\Demo\Prefabs\SimulationEngine.

SimulationEngine prefab

The SimulationEngine prefab has the FlowEngine and SimulationEngine scripts. The
FlowEngine script is what does the flow simulation. The SimulationEngine script starts and
stops the flow simulation, and keeps track of all of the flow nodes.

Next we'll add the flow nodes to the scene. In this example we'll just have one holding tank
above another, with two pipes connecting them. Start by adding two instances of the
HoldingTank4x6 prefab and two instances of the HorizontalStraightPipe prefab to the scene.
Then arrange them to look roughly like the below image. Don't worry about getting very exact
with your placement.

Approximately placed nodes

Once you have placed the flow nodes, go back and select the SimulationEngine prefab that
was added earlier. In the inspector, press the Gather Nodes button at the top of the
SimulationEngine script area. This should snap the roughly added nodes to the grid, and add
them to the Nodes list on the SimulationEngine. Your scene/inspector should look something
like below.

After nodes have been gathered

Now you've got the nodes all set up, but no water. In this example, we're going to fill the upper
tank with water. To do this, we first need to know where in the grid the upper tank is. To find

out, select the upper holding tank. As you can see, the holding tank has a Lower Left, and a
Width and Height. In the example to the left, the lower left is (-5,-1), and it is 4 spaces wide
and 6 spaces tall (hence the name HoldingTank4x6 ;)).

Holding Tank data

We're now going to use that holding tank position data as input to the FlowEngine. So first
select the SimulationEngine GameObject. In the FlowEngine section of the inspector, put in
the holding tank's Lower Left corner as the Range Start, and the holding tank's upper right
corner as Range End, then click Add Initial Spaces. Note that the upper right coordinate is
(left + width - 1, bottom + height - 1). Before you click, it should look something like below,
given the holding tank example above.

After clicking, Initial Water Spaces should now have a size of 24. Now just click play, and
watch water flow from one tank to the other!

Water flowing!

Congratulations, you just finished setting up your first flow simulation!

Script Options

FlowEngine
The FlowEngine is the main workhorse that runs the flow simulation. It is built to plug into a
potentially more comprehensive simulation engine implementing the ISimulationEngine
interface. The SimulationEngine class included in the demo provides an example
implementation of ISimulationEngine. Other than Initial Water Spaces, the default values for
the FlowEngine properties should be sufficient. They are described below for completeness.

Editor Properties

Add Range of Initial Spaces (Button)
Used for bulk adding a range of spaces to initially contain water. Adds each grid space in the
rectangle whose opposing corners are defined by Range Start and Range End. Any spaces
already in the list are ignored and not re-added.

Initial Water Spaces (List<GridSpace>)
A list of grid spaces that will have water in them when the simulation starts. Values can be
added manually, or in ranges via the Add Range of Initial Spaces button.

Marker Sprite (Sprite Renderer)
The SpriteRenderer prefab that will be instantiated for each water particle that is flowing in the
system.

Filled Sprite (Sprite Renderer)
The SpriteRenderer prefab that will be instantiated to fill in the gaps between water particles in
areas that should be a continuous body of water.

Solver Max Iterations (int)
The fail safe maximum to ensure the iterative part of the algorithm will never loop infinitely.

Solver Tolerance (float)
The value deemed close enough to zero to be used as a finishing point for the iterative part of
the algorithm.

Fill Increment (float[0-30])
The rate at which the fill sprites fade in to fill in gaps. If you are finding a lot of awkward looking
gaps between particles, increasing the Fill Increment can help ensure they are filled in quicker.
In general it should be greater than the Drain Increment.

Drain Increment (float[0-30])
The rate at which the fill sprites fade out when a space is no longer considered entirely filled. If
too small, this can lead to water seeming to linger long after it actually left. If too large, or
greater than the Fill Increment, it can lead to the fill sprites strobing in and out if the fill state is
oscillating quickly.

Fill Divisions (int[1-4])
The amount each grid space is divided in each direction to place the fill sprites. There will be
Fill Divisions squared fill sprites per grid space. Lower values can result in low resolution edges,
while higher values can potentially cause awkward gaps and performance issues.

Division Multiplier (int[1-8])
The fill sprites are shown if they are surrounded by water. The Division Multiplier is the
number of grid spaces it checks in each direction to determine whether there is water around
the space. Increasing this tends to make the fill sprites more stable, but also adds significant
processing time that can slow down performance.

Starting Particles Per Space (int[4-16])
The number of particles instantiated in each Initial Water Space. Their position in the grid
space is randomly generated in alternating quadrants of the space. More particles enables
more accurate tracking of where exactly the water is, at the cost of more work per frame.

Fill Update Frequency (float[0-1])
Allows for rate limiting how often the fill sprites are updated. The value is specified in seconds.
The fill sprites will be updated after the longer of the Fill Update Frequency and the standard
Update call.

Auto Fill Particle Count (int[1-20])
Short circuit mechanism for showing the fill sprites. If there are at least this number of particles
in a fill space, it will automatically start showing the fill sprite, and entirely skip checking the
surrounding spaces for water.

Maximum Water Opacity (float[0-1])
The opacity value applied to marker particle sprites, and the maximum opacity the fill sprites will
fade into. Note that it only gets set on newly instantiated marker particle sprites. As such, due
to the use of a sprite pool, the game must be restarted for changes to this value to be reflected.

SimulationEngine
The SimulationEngine is the demo implementation of ISimulationEngine.

ISimulationEngine
ISimulationEngine is an interface that defines how the FlowEngine will talk to a more
comprehensive simulation engine. Implementations are expected to all FlowEngine.Initialize
as part of Awake().

StartedSimulation (event Action)
The FlowEngine keys off of this event to start the flow simulation. Should not be called if the
simulation is already running.

StoppedSimulation (event Action)
The FlowEngine keys off this event to stop the flow simulation.

AllNodes (IEnumerable<IFlowNode>)
An enumeration of all the IFlowNodes from the scene that should be part of the flow simulation.
The demo SimulationEngine has an editor script that automatically populates a list from what
is in the scene. In a full fledged game, you may have other mechanisms for this list to change
at runtime while the simulation is stopped. The FlowEngine will re-initialize itself from this
enumeration each time the simulation is started.

TransformGridToWorld(Vector2 -> Vector2)
The FlowEngine works on a grid system that might not directly correspond to world
coordinates. This function does whatever transformations necessary to take a Vector2 position
in the grid coordinate system, and returns where that position is in world coordinates.

Editor Properties

Gather Nodes (Button)
The Gather Nodes button does the following:

● Finds all IFlowNodes in the scene, and adds them to this SimulationEngine.
● Snaps each IFlowNode's position to be aligned with the grid.
● Sets each IFlowNode's grid position property.

Start Simulating (bool)
A bool value specifying whether the simulation should be started automatically when the scene
starts.

Grid Scale (float)
The size in world units of a single grid space.

Grid Origin (Vector2)
The origin of the grid coordinate system in world space.

Nodes (List<GameObject>)
This is a list of GameObjects because the editor doesn’t support interfaces by default. However
it is expected that all of the GameObjects in this list will have a behaviour that implements
IFlowNode. For this demo implementation, it is generally expected that this will only be
modified by clicking the Gather Nodes button.

Pipe
Most of the Pipe properties are what define where water can enter/leave the pipe, and should
not be modified.

Editor Properties

Pipe Space (GridSpace)
The location in the grid of the pipe. In the demo this is automatically set by the Gather Nodes
button on the SimulationEngine. If you are placing pipes at runtime, this value must be
updated before restarting the simulation.

Default Sprite (Sprite)
The sprite for the pipe.

HoldingTank
The HoldingTank represents a walled rectangular container for water. By default, all the edges
are solid. Openings are automatically created on an edge if there is an adjacent pipe that has
an opening on the same edge.

Editor Properties

Lower Left (GridSpace)
The location in the grid of the lower left corner of the holding tank. In the demo this is
automatically set by the Gather Nodes button on the SimulationEngine. If you are placing
holding tanks at runtime, this value must be updated before restarting the simulation.

Width (int)
The number of grid spaces wide the tank is.

Height (int)
The number of grid spaces tall the tank is.

HorizontalPump
The HorizontalPump is an extra script placed on a horizontal straight pipe. It imparts the ability
to add extra acceleration to the system. See
http://www.cerebralnexus.com/controlling-the-simulation-tutorial.html for a more detailed tutorial
on controlling a pump.

Editor Properties

Maximum Acceleration (float)
This is the maximum acceleration value that can be added in either direction.

Functions

SetActuation (float)
SetActuation expects a float between -1 and 1. It will update the added acceleration to be the
given float times that pump’s Maximum Acceleration property. This could be called from code,
or it can be hooked up to the On Value Changed event of a slider.

http://www.cerebralnexus.com/controlling-the-simulation-tutorial.html

